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Abstract: We propose a model for the electrostatics of globular proteins in which the low dielectric region
is replaced by concentric spheres of the appropriate size. The method uses analytical formulas for the
dielectric sphere and allows an efficient and accurate treatment of bulk charges. For surface charges, we
propose a numerical determination of the sphere radius based on the solvent exposure of the individual
atoms. The present implementation of the sphere model yields a good approximation of finite-difference
Poisson solvation and interaction energies for a test set of 12 proteins.

1. Introduction

An accurate and efficient evaluation of electrostatic energies
of macromolecules in aqueous solution is essential for many
applications in computational structural biology, such as mo-
lecular dynamics simulations or structure prediction methods.1

In the continuum dielectric approximation, a correct evaluation
of the electrostatic energy of solvated macromolecules requires
the solution of Poisson’s equation. While iterative numerical
calculations yield a good approximation of the potential,2-5 their
computational cost is prohibitively high for many important
applications.6 Thus, several simplified models have been
developed. One of the most popular is the generalized Born
(GB) approach,7,8 which for every solute atom requires the
evaluation of its effective Born radius by integration of the
energy density over the solute volume. Several GB implementa-
tions have appeared in the literature with analytical9-13 and
numerical7,14,15evaluation of the effective Born radii. Numerical
approaches are more accurate,13,16 but only analytical imple-

mentations can be used in molecular dynamics simulations.17,18

Most of the GB implementations make use of the Coulomb field
approximation, which for macromolecules may result in a
significant underestimation of the reaction field especially for
atoms near the surface.8,19 Recently, empirical corrections to
this approximation have been proposed.13,15

Extremely crude approximations have been suggested for the
electrostatic interaction energy mainly for efficiency reasons.20,21

Although they cannot be derived from physical principles,
distance dependent dielectric functions such asε(r) ∝ r have
been used with some success in molecular dynamics simula-
tions.22-24 One could be tempted to develop a physically more
accurate expression for the effective dielectric constant. It is,
however, immediately clear that a function ofr alone will not
be adequate. To show this, one can consider a sphere of
dielectric constantεm and radiusR surrounded by water of
dielectric constantεw. For a point charge at the center of the
sphere, the potentialφ is easily obtained, and the effective
dielectric constant defined asε(r) ) 1/(rφ(r)) becomes

It follows that ε depends on the quantity (r/R), that is, on the
position of the second charge relative to the radiusR of the
sphere.
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While we do not wish to present the following developments
as a search for an effective dielectric constant, it was the above
example which inspired the idea to replace globular proteins
by a sphere of appropriate volume and use this simplified
framework to derive analytical expressions for the interaction
and solvation energies. An analytical theory of electrostatic
energies based on a spherical solute was proposed several
decades ago25 and later extended to account for differences in
the solvent accessibility of side chains26 and atoms.27 The novel
aspect in the present paper is the replacement of the solute
volume by concentric spheres whose radii are determined using
information about the location and structure of the molecular
surface. An advantage of this approach is the simple and
physically plausible treatment of bulk charges. For exposed
charges, the method used to adjust the sphere radius is of critical
importance. We show that a simple strategy based on the solvent
exposure of the individual atoms yields good agreement with
interaction and solvation energies obtained by finite-difference
Poisson (fdP) calculations.

2. Theory

Consider a macromolecule of dielectric constantεm and
volumeVm. If the shape of the molecule is almost spherical, it
seems reasonable to approximate the low dielectric volume by
a sphere of dielectric constantεm and radiusR, such that
(4/3)πR3 ≈ Vm (the appropriate choice ofR for arbitrary
molecules will be the subject of section 3.1). The origin of this
sphere coincides with the center of geometry of the molecule,
and coordinates will henceforth be defined relative to this point.
To avoid charges outside the sphere or account for the local
surface structure, the radiusR may have to be modified. The
quality of our method will depend on the details of this rescaling,
but the following calculations are not affected, so we postpone
the heuristic derivation of a possible prescription to section 3.2.

For a system of point charges, the electrostatic energy is the
sum of all pair interactions

and the self-energy contributions of the individual charges

where ε(xb) is a location-dependent dielectric constant, and
EBi(xb) is the electric field produced by chargei.28 Because self-
energies of point charges are infinite, we subtract the constant
value of the self-energy in a homogeneous medium of dielectric
constantεm to obtain a finite result, whose physical interpretation
is the solvation energy of the sphere with chargei switched on:

EB and ẼB denote the electric fields in the inhomogeneous and
homogeneous medium, respectively.

Analytical expressions can be derived for (2) and (4) because
of the spherical geometry of the solute region. The calculation
is carried out in Appendix A. If we denote the Cartesian
coordinates of atomi by xbi, its charge byqi, and the relative
positions of atomsi andj by their respective radial distancesri

andrj, as well as an angleθ, the resulting formulas read (ri, rj

e R)

and

wherePl denotes the Legendre polynomial of rankl, and the
coefficientCl is

The infinite series in (5) and (6) may be simplified using the
fact thatεm , εw. Setting

and using the relation∑l)0
∞ xlPl(y) ) (1 - 2xy + x2)-1/2, one

can express the results (5) and (6) in the closed forms

and

In fact, slightly more accurate expressions could be obtained
using the approximation (1+ l/(l + 1)(εm/εw))-1 ≈ 1 - l/(l +
1)(εm/εw) instead of (8) as shown in Appendix B. The accuracy
of (9) and (10) is sufficient, however, and we will therefore
build our model on the basis of these simple formulas. They
allow a new approach to the modeling of electrostatic solvation
and interaction energies which seems particularly suitable for
large, globular proteins.

The sphere radiusR is a quantity whose precise value for
each of the (pairs of) charges has yet to be defined. A careful
determination ofR would, in principle, allow one to reproduce
the fdP interaction and solvation energies by means of (9) and
(10), respectively. Strategies of varying degree of sophistication
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and computational efficiency could be imagined. In this paper,
we will propose a fairly simple, semianalytical method based
on the solvent exposure of the individual atoms.

An extension of the sphere model to a spheroidal model
would reduce the need for and extent of rescaling. In fact,
analytical expressions can also be derived for a low dielectric
region of spheroidal shape, as shown in Appendix C. For surface
charges, a careful adjustment of the dielectric boundary position
as a function of solvent exposure (or some other parameter)
would, however, still be inevitable. To keep matters simple,
we decided to stick with the sphere model.

3. Implementation

3.1. Definition of the Sphere Radius for Charges in the
Core Region.In the core region of the molecule, the detailed
structure of the molecular surface may be ignored, and a constant
value ofR may be used. To avoid systematic shifts in energy,
the value ofRhas to be chosen correctly. Because most globular
molecules are not spherical, but rather ellipsoidal in shape, good
results for the bulk electrostatics are obtained by choosing the
sphere radius roughly equal to the minor semi-axis. This value
may be obtained either by diagonalizing the mass of inertia
tensor of the molecule (assuming a uniform density) and
rescaling the axes to preserve the volume or numerically by
choosingR such that a certain percentage of the sphere volume
is occupied by the solute. Figure 1 illustrates the fraction of
volume occupied by solute as a function ofR for the four
molecules 1ycr, 1hdn, 2ci2, and a three-strandedâ-sheet (GS
peptide29). While the first three examples (636-1002 atoms)
are fairly large and of roughly spheroidal shape, the 20-residue
GS peptide does not really fall into the class of globular proteins
and is considered here to assess the quality of the method when
applied to cases for which it was originally not designed.

A calculation based on ellipsoid semi-axes yields values of
R which approximately correspond to a solute fraction of 0.95.

Hence, we used the latter criterion to determine the sphere radius
for the core region (R0.95).

3.2. Definition of the Sphere Radii for Surface Charges.
3.2.1. Charges Exposed to the Solvent.A major disadvantage
of replacing a molecule by a geometrically simple object such
as a sphere is the loss of information about the local surface
structure. Even small water-filled cavities have a large screening
effect and dramatically reduce/enhance the interaction/solvation
energies of nearby solute charges. To take this effect into
account, we calculate the “solvent exposure”Fi of all atomsi
in the molecule. For surface atoms (Fi > 0), we determine the
sphere radiusR in such a way that charges, whose solvent
exposure is large, will end up close to the dielectric discontinuity
surface, as illustrated in Figure 2.

Simple analytical considerations yield some guidance in the
search for an appropriate prescription. We define the solvent
exposureFi of atomi as the fractional volume of a shell around
atom i, which is occupied by solvent. For the thickness∆ of
the shell, we used∆ ) rvdW,i. Similar prescriptions (and results
of comparable quality) may be obtained by choosing a constant
value such as∆ ) 1 Å.

First, consider a completely solvated sphere of radiusrvdW

and unit charge. Its solvation energy (assumingεm ) 1, εw )
∞) is -(2rvdW)-1. To reproduce this result with (10), we have
to adjust the sphere radiusR such that

Supposing (rvdW/r) , 1, it follows from (11) that

For small values ofF, the distance of the charge from the surface
of the sphere may be estimated from the volume fraction of the
penetrating shell segment of heighth ) r + 2rvdW - R. This

(29) De Alba, E.; Santoro, J.; Rico, M.; Jime´nez, M. A. Protein Sci.1999, 8,
854-865.

Figure 1. Definition of the sphere radius for the core region. A calculation based on ellipsoid semi-axes yields results comparable toR0.95 obtained by
choosingsolute_fraction(R0.95) ) 0.95.
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yields

with R ) x7/6. To define a functionR(F) valid in the interval
0 e F e 1, which smoothly approaches (12) forF f 1, we
used the modification

in (13). The resultingR(F,δ) satisfies∂R/∂F(F ) 1) ) 0, and
the parameterδ determines how rapidlyR(F,δ) decreases as a
function of F. We found that small values ofδ produced the
best results. In the limitδ f 0, one obtains the formula

which works reasonably well for the interval 0e F e 1.
Even though the previous arguments apply to solvation

energies only, slight modifications of the semiempirical formula
(15) (see Results section) were implemented as the prescriptions
for both solvation and interaction energies. In the case of
interaction energies, the situation is somewhat complicated by
the fact that two chargesi1 and i2 have to be considered. If
both charges are exposed to the solvent, we first calculate

and then adjust the radius according to

If only one charge is exposed to the solvent,rvdW andF of the
exposed atom are used to calculateδr.

Alternative strategies to account for solvent accessibility in
sphere-based models can be found in the work by Shire et al.26

and in a more recent paper by Havranek and Harbury.27

3.2.2. Bulk Charges Outside the Core Region.Even if an
atom is not exposed to the solvent, anR larger thanR0.95 may
still be required. In Figure 2, these atoms correspond to that
part of the hatched bulk region, which lies outside the core
region, defined byrcore ) R0.95 - 2rvdW. Increasing the sphere
radius according to

works quite well for interaction energies. In the case of solvation
energies and small van der Waals radii, the relative error can
be high. A simple way to more accurately adjust the sphere
radius consists of evaluating the solvent fraction in several shells
of varying thicknesses. Our results were obtained using shell
thicknesses of∆ ) 1 Å and∆ ) 2 Å in addition to∆ ) rvdW.

4. Preparation of Data Sets

To test our model, we used 12 proteins for which fdP data
were available from an unrelated investigation. The molecular
surface was used to define the low dielectric boundary in the

Figure 2. Illustration of the strategy used to adjust the sphere radiusR according to the shape of the molecular surface (MS) and the position of the charges.
R0.95 is the radius of the sphere, centered on the center of geometry (CG), whose volume is occupied to 95% by solute. The hatched region inside the
molecule indicates bulk atoms. Electrostatic energies of bulk atoms in the core region (small dashed circle) are calculated usingR0.95. For charges which are
exposed to the solvent (Fi > 0), R is modified in such a way that the charge position ends up close to the surface of the sphere (large dashed circle). The
solvent exposureFi of atom i is indicated by the hatched region outside of the molecular surface.

R ) max
i)i1,i2

(ri) + δr (17)

R ) max(R0.95, ri + 2rvdW,i) (18)

R≈ r + 2rvdW(1 - RxF) for F ≈ 0 (13)

RxF f
3
4x1 + δ

δ xF - 1
1 + δ

F1+δ (14)

R ) r + 2rvdW{1 - 3
4

xF - F ln(F)} (15)

δr ) min
i)i1,i2

(2rvdW,i{1 - 3
4 xFi - Fi ln(Fi)}) (16)

Model for the Electrostatics of Globular Proteins A R T I C L E S

J. AM. CHEM. SOC. 9 VOL. 125, NO. 15, 2003 4603



sphere model, GB, and fdP calculations. The molecular surface
is spanned by thesurfaceof a water probe of radius 1.4 Å; it
is preferred over other surface definitions (e.g., solvent acces-
sible surface) because it gives the best agreement between fdP
results and experimental values.14 We setεm ) 1 andεw ) 80
in all of the calculations. Van der Waals radii were taken from
the CHARMM param19 set30 and ranged from 0.6 to 2.4 Å.

4.1. Sphere Model.Shells of thicknessrvdW were used to
calculate the solvent exposuresFi of the individual atoms.R0.95

was determined by increasing the sphere size in steps of 0.25
Å until the solute fraction fell below 0.95. All numerical
integrations were performed by summation on a 0.25 Å grid.

4.2. Finite-Difference Poisson.The fdP calculations were
performed with the PBEQ module31 in CHARMM.30 Pair
interaction energies were obtained by calculating the potential
for each charge separately and evaluating this potential at the
positions of the other charges. Solvation energies were calculated
by subtracting the vacuo self-energy from the self-energy in
solution. To obtain the self-energies, the fdP potential was
evaluated at the charge position itself (which yields a finite value
because of the charge discretization on the grid) and multiplied
by a factor of1/2. For each charge, both self-energy values were
calculated using the same grid to eliminate effects resulting from
the distribution of the charge onto the lattice sites. The grid
spacing used in the fdP calculations was 0.2 Å.

4.3. Generalized Born.The program SEED32 was used for
the GB calculations. SEED performs a numerical integration
of the energy density on a cubic grid to evaluate the effective
Born radii.14 A grid spacing of 0.1 Å was used.

5. Results

To judge the quality of the present implementation of the
sphere model, the interaction and solvation energies of 12
proteins were compared to the values obtained by fdP. The
PDB33 codes of the 12 proteins are 1a2p (1073 atoms,R0.95 )
10.0 Å), 1ycr (1002, 12.5), 1ycq (979, 11.3), 1pht (813, 10.3),
1hdn (785, 11.5), 1ubq (746, 11.3), 2ci2 (636, 9.0), 2ptl (575,
9.3), 1bpi (568, 8.0), 1pgb (535, 8.8), 1crn (396, 7.0), and the
GS peptide (215, 6.5).

No systematic optimization of parameters was performed. The
prescriptions for the adjustment of the sphere radiusR were
based on formula (15). Slight modifications (3/4 f 0.77 and a
lower bound atr + 0.6rvdW for solvation energies,3/4 f 0.79
for interaction energies) were made to improve the results for
one protein (1hdn) and then kept fixed for the evaluation of the
other molecules.

All pair interaction energies and solvation energies were
calculated for unit charges. The quality of our approximation
turned out to be similar for all 12 molecules (Table 1). We
therefore only show the results for the large, roughly spheroidal
structure 1ycq (axes ratio≈ 2:3) and the small, clearly
nonspherical GS peptide. The upper panels in Figure 3 compare
the interaction energies, while the lower panels show the results
for solvation energies. The red data points in these figures
indicate atoms (or pairs of atoms) exposed to the solvent, while
green data points show the results for bulk atoms. Two different
colors were chosen because of the distinct nature of the
prescriptions. The discrete levels in the bulk solvation energies
originate from bulk charges outside the core region (see section
3.2.2). Whenever two such atoms have the same van der Waals

(30) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan,
S.; Karplus, M.J. Comput. Chem.1983, 4, 187-217.

(31) Im, W.; Beglov, D.; Roux, B.Comput. Phys. Commun.1998, 111, 59-75.
(32) Majeux, N.; Scarsi, M.; Apostolakis, J.; Ehrhardt, C.; Caflisch, A.

Proteins: Struct., Funct., Genet.1999, 37, 88-105.

(33) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig,
H.; Shindyalov, I. N.; Bourne, P. E.Nucleic Acids Res.2000, 28, 235-
242.

Figure 3. Comparison of electrostatic energies obtained from the sphere model and from the numerical solution of Poisson’s equation forεw ) 80, εm )
1, and unit charges. Green crosses and red plus signs represent charges in the core and surface region, respectively. All energy values are in kcal/mol.
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radius, definition (18) of the sphere radius yields identical
distances from the dielectric boundary and hence similar
solvation energies.

The solvent-exposure parameterF yields information on the
local structure of the solute-solvent boundary. As it appears
in Figure 3, this information proves sufficient to quite accurately
reproduce solvation energies even for the GS peptide which
consists of only 20 residues. The quality of the interaction
energies is somewhat less impressing. This is evident also in
Table 1, which contains correlation values and slopes of the
fitting lines, and is partly due to the fact that interaction energies
may depend on the global shape of the molecule and hence
cannot be adequately treated on the basis of local surface
information alone. A parameter derived from the solute distribu-
tion in a larger neighborhood of the charges as well as a
prescription specifically tailored to interaction energies would

be required to improve the estimates for weak (highly screened)
interactions.

Figure 4 compares the interaction and solvation energies
calculated by the GB method to the values obtained by fdP.
The GB approach used here is based on the Coulomb field
approximation. This leads to an overestimation of the effective
radii and hence to a systematic overestimation of interaction
energies and underestimation of solvation energies. The sig-
nificant deviation in the slope of the GB solvation energies is
consistent with analytical results for simple solute geometries.8

The values in Table 1 indicate that the sphere model reproduces
fdP solvation energies more accurately than GB. On the other
hand, GB yields a slightly better correlation with fdP for
interaction energies due to the smaller spread of points in the
highly populated low energy region of the plot.

Both the GB method and our sphere model are clearly
superior to the simple approximationε(r) ) r, which completely
fails to evaluate high energy interactions correctly (results not
shown).

The computation time in the present implementation of the
sphere model is dominated by the few minutes needed to
calculate the molecular surface. Because the sphere model only
involves integrations over shells around each atom and not over
the entire solute volume, it is somewhat more efficient than
numerical GB.

6. Concluding Discussion

Our aim was to develop a simple but physically plausible
model for the electrostatics of macromolecules in solution. The
replacement of the solute/solvent boundary by a sphere yields
analytical formulas which, for an appropriate choice of the
sphere radius, produce good results in the bulk of the molecule.
For charges located near the surface of the protein, information
on the local surface structure is inevitable for an accurate

Figure 4. Comparison of electrostatic energies obtained from the generalized Born model and from the numerical solution of Poisson’s equation forεw )
80, εm ) 1, and unit charges. All energy values are in kcal/mol.

Table 1. Comparison of the Sphere Model and GB with fdP

Eint Esolv

spherea GBb spherea GBb

slope correl slope correl slope correl slope correl

1a2p 0.988 0.984 1.203 0.989 0.960 0.992 0.607 0.967
1bpi 0.993 0.984 1.201 0.991 0.972 0.994 0.652 0.971
1crn 0.991 0.987 1.187 0.993 0.977 0.992 0.590 0.962
1hdn 0.994 0.988 1.199 0.990 0.980 0.996 0.637 0.975
1pgb 1.000 0.987 1.200 0.992 0.967 0.993 0.611 0.968
1pht 0.991 0.986 1.198 0.990 0.959 0.993 0.622 0.966
1ubq 0.991 0.988 1.195 0.991 0.975 0.995 0.618 0.970
1ycq 0.991 0.986 1.205 0.990 0.968 0.994 0.640 0.973
1ycr 0.995 0.988 1.193 0.991 0.960 0.994 0.614 0.977
2ci2 0.996 0.986 1.200 0.991 0.964 0.993 0.624 0.963
2ptl 0.997 0.987 1.195 0.991 0.970 0.994 0.631 0.975
GS 0.972 0.989 1.168 0.995 0.981 0.994 0.609 0.974

a Slopes and correlation coefficients obtained by comparing the sphere
model and fdP.b Slopes and correlation coefficients obtained by comparing
the GB approach and fdP.
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evaluation of solvation and interaction energies. We chose to
consider a shell around the atom and used the volume fraction
occupied by solvent as the parameter which measures solvent
exposure. Simple analytical considerations then lead to a formula
for the sphere radius as a function of this parameter.

Our method yields a reasonably accurate description of
electrostatic effects at a fraction of the computational cost of a
numerical solution of Poisson’s equation. In its current imple-
mentation, the method is somewhat simpler and faster than a
numerical GB calculation but yields solvation and pair interac-
tion energies of comparable accuracy. The strengths of our
model are the good results in the high energy region and the
absence of systematic errors, both indications that the essential
physics is correctly captured.

For macromolecules composed of several roughly spherical
clusters, such as 1a2p, a more successful strategy could be to
replace the individual clusters by spheres of appropriate radius.
Future developments will include the use of a simple analytical
expression for the solvent exposure parameter. The real test for
any energy function is its application in molecular dynamics
simulations and its ability to discriminate between correctly
folded and misfolded structures, and we plan to investigate this
in the future.
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Appendix A

The analytical solution of the Poisson-Boltzmann equation
for the dielectric sphere was obtained by Kirkwood.25 Here we
derive the solution for the Poisson equation, which is of interest
for the present approach. We want to calculate the potential at
Cartesian positionxb due to a unit charge located at a pointxb′
inside a spherical cavity centered on the origin, of radiusR and
dielectric constantεm, which is surrounded by water (εw), that
is, solve the Poisson equation

Changing to spherical coordinates (r,θ,φ) compatible with the
geometry of the dielectric boundary and using the symmetry of
revolution around theOx′ axis, we expand the potential and
delta function in Legendre polynomials28

Substitution of (20) and (21) into (19) yields the following

equation forgl(r,r′)

which for r * r′ allows the two solutionsrl and (1/rl+1). Because
the potential forxb * xb′ must be finite and symmetric under
interchange ofxb andxb′, gl(r,r′) is of the form

wherer< ) min(r,r′) andr> ) max(r,r′). The delta function in
(22) implies

from which it follows that

The coefficientsBl and Cl can now be determined from the
boundary conditions atr ) R. Continuity of the parallel
component of the electric field implies

and the continuity of the normal component of the displacement
field

For the interior solution, one needs the expression of the
coefficientBl, which is

From (28), (25), (23), and (20), we finally obtain the potential

which, using the identity∑l)0
∞ (r<

l /r>
l+1)Pl(cosθ) ) 1/(|xb - xb′|),

∇xb
2
φ(xb,xb′) ) - 4πδ(xb - xb′)[ 1

εm
|xb| e R

1
εw

|xb| > R] (19)

φ(xb,xb′) ) ∑
l)0

∞

gl(r,r′)Pl(cosθ) (20)

δ(xb - xb′) )
1

r2
δ(r - r′) ∑

l)0

∞ 2l + 1

4π
Pl(cosθ) (21)

1
r

d2

dr2
(rgl(r,r′)) -

l(l + 1)

r2
gl(r,r′) )

- 2l + 1

r2
δ(r - r′)[ 1

εm
r e R

1
εw

r > R] (22)

gl(r,r′) ) [Al

εm
r<

l (Blr>
l + 1

r>
l+1) r e R

Cl

εw

r<
l

r>
l+1

r > R] (23)

d
dr

(rgl(r,r′))|r)r′+
- d

dr
(rgl(r,r′))|r)r′-

) - 2l + 1
εmr

(24)

Al ) 1 (25)

gl(r,r′)|r)R-
) gl(r,r′)|r)R+

(26)

εm

∂gl(r,r′)
∂r |

r)R-

) εw

∂gl(r,r′)
∂r |

r)R+

(27)

Bl ) - 1

R2l+1

1 -
εm

εw

1 + l
l + 1

εm

εw

(28)

φ(xb,xb′) ) ∑
l)0

∞ r<
l

εm( 1

r>
l+1

-
r>

l

R2l+1

1 -
εm

εw

1 +
l

l + 1

εm

εw

)Pl(cosθ) (29)
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can be expressed in the form

Formulas (5) and (6) for the interaction and solvation energies
immediately follow.

Appendix B

Slightly more accurate closed form analytical expressions for
(5) and (6) can be derived using the approximation

instead of (8). From the relation

one finds by integration and subsequent derivation with respect
to x

Hence, the interaction energy may be approximated by

and from a similar calculation for the solvation energy one finds

For εw ) 80 andεm ) 1, the accuracy of the simpler formulas

(9) and (10) is fully sufficient for our purpose. One could in
fact even use the formulas for the conducting sphere (εw ) ∞).

Appendix C

Because many proteins are roughly spheroidal in shape,
improved estimates for solvation and interaction energies could
be obtained by approximating the solute-solvent boundary by
a spheroid instead of a sphere. The orientation and axes ratios
of the spheroid are found from a diagonalization of the
molecule’s mass of inertia tensor (assuming a uniform density).
In spheroidal coordinates, analytical results for interaction and
solvation energies may again be derived. We will give them
here for prolate spheroids (see the Appendix in Hill’s paper34

for details on how to obtain the electrostatic potential).
The Cartesian coordinatesx, y, andzare related to the prolate

spheroidal coordinatesê, η, andφ by

where the parametera is fixed by the semi-axesalargeandasmall

of the spheroid as

The surface of the spheroid corresponds to a valueês defined
by

A somewhat lengthy calculation yields the following expression
for the interaction energies between two charges

where

The expression for the solvation energy becomes

ThePl
m andQl

m denote the associated Legengre polynomials of
the first and second kind, respectively. Recurrence relations for
the associated Legendre polynomials would, in principle, allow

(34) Hill, T. L. J. Chem. Phys.1944, 12, 147-156.

φ(xb,xb′) )
1
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1

R( 1
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-
1
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) ∑
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Pl(cosθ) (30)

Cl ≈ 1 - l
l + 1
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(31)
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∞
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x ) a sinh(ê) sin(η) cos(φ) (36)

y ) a sinh(ê) sin(η) sin(φ) (37)

z ) a cosh(ê) cos(η) (38)
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an efficient calculation of these sums up to a givenlmax, but
precautions must be taken to control the loss of significant
figures. A numerically robust implementation of these series
would provide more accurate results for the bulk electrostatics

of proteins. For charges exposed to the solvent, however, a
prescription analogous to (15) would still be required.
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