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Abstract: We propose a model for the electrostatics of globular proteins in which the low dielectric region
is replaced by concentric spheres of the appropriate size. The method uses analytical formulas for the
dielectric sphere and allows an efficient and accurate treatment of bulk charges. For surface charges, we
propose a numerical determination of the sphere radius based on the solvent exposure of the individual
atoms. The present implementation of the sphere model yields a good approximation of finite-difference
Poisson solvation and interaction energies for a test set of 12 proteins.

1. Introduction mentations can be used in molecular dynamics simulafibis.

Most of the GB implementations make use of the Coulomb field
approximation, which for macromolecules may result in a
significant underestimation of the reaction field especially for

An accurate and efficient evaluation of electrostatic energies
of macromolecules in aqueous solution is essential for many
applications in computational structural biology, such as mo- ° - .
lecular dynamics simulations or structure prediction mettiods, a{0ms near the surfagé? Recently, empirical corrections to
In the continuum dielectric approximation, a correct evaluation thiS @PProximation have been proposéé:
of the electrostatic energy of solvated macromolecules requires EXtremely crude approximations have been suggested for the
the solution of Poisson’s equation. While iterative numerical €lectrostatic interaction energy mainly for efficiency reas8ii.
calculations yield a good approximation of the poterftiltheir Although they cannot be derived from physical principles,
computational cost is prohibitively high for many important distance dependent dielectric functions suck(as U r have
application$ Thus, several simplified models have been been used with some success in molecular dynamics simula-
developed. One of the most popular is the generalized Born tions??~>* One could be tempted to develop a physically more
(GB) approacH;® which for every solute atom requires the accurate expression for the effective dielectric constant. It is,
evaluation of its effective Born radius by integration of the however, immediately clear that a functionroflone will not
energy density over the solute volume. Several GB implementa-P€ adequate. To show this, one can consider a sphere of

tions have appeared in the literature with analy®icdl and dielectric constanky, and radiusR surrounded by water of
numerical-1415evaluation of the effective Born radii. Numerical  dielectric constant,. For a point charge at the center of the

dielectric constant defined a$r) = 1/(r¢(r)) becomes
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While we do not wish to present the following developments  Analytical expressions can be derived for (2) and (4) because
as a search for an effective dielectric constant, it was the aboveof the spherical geometry of the solute region. The calculation
example which inspired the idea to replace globular proteins is carried out in Appendix A. If we denote the Cartesian
by a sphere of appropriate volume and use this simplified coordinates of atonn by X%, its charge bygi, and the relative
framework to derive analytical expressions for the interaction positions of atoms andj by their respective radial distances
and solvation energies. An analytical theory of electrostatic andr;j, as well as an anglé, the resulting formulas readl;(r;
energies based on a spherical solute was proposed severak R)
decades agd and later extended to account for differences in

the solvent accessibility of side chaihand atoms? The novel a4 a(1 1\ [min)

aspect in the present paper is the replacement of the solute™intii = _ X — X| N ? e_ N 6_ ;Cl g Pi(coso) (5)
volume by concentric spheres whose radii are determined using mer moow

information about the location and structure of the molecular gpq

surface. An advantage of this approach is the simple and

physically plausible treatment of bulk charges. For exposed qi2 1 1\= [r\?

charges, the method used to adjust the sphere radius is of critical Eqonj = — —(— - —) Z)Cl (—) (6)
importance. We show that a simple strategy based on the solvent 2R\, € \R

exposure of the individual atoms yields good agreement with
interaction and solvation energies obtained by finite-difference
Poisson (fdP) calculations.

2. Theory

Consider a macromolecule of dielectric constapt and
volume Vp,. If the shape of the molecule is almost spherical, it
seems reasonable to approximate the low dielectric volume by
a sphere of dielectric constamf, and radiusR, such that
(4/37R® ~ V,, (the appropriate choice oR for arbitrary
molecules will be the subject of section 3.1). The origin of this
sphere coincides with the center of geometry of the molecule,
and coordinates will henceforth be defined relative to this point.
To avoid charges outside the sphere or account for the local
surface structure, the radil&may have to be modified. The
quality of our method will depend on the details of this rescaling,
but the following calculations are not affected, so we postpone
the heuristic derivation of a possible prescription to section 3.2.

For a system of point charges, the electrostatic energy is the
sum of all pair interactions

Ennij = 2 frsc (ER) E (DX @

and the self-energy contributions of the individual charges

1 T2/
Esery = g e (OE (R ®)
where ¢(X) is a location-dependent dielectric constant, and
Ei(X) is the electric field produced by chargé® Because self-
energies of point charges are infinite, we subtract the constant
value of the self-energy in a homogeneous medium of dielectric
constantn, to obtain a finite result, whose physical interpretation
is the solvation energy of the sphere with chargwitched on:

1 N2/ =2

Eooni = g2 el €RETR) — B (R)dx  (4)
E and E denote the electric fields in the inhomogeneous and
homogeneous medium, respectively.
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whereP, denotes the Legendre polynomial of rankand the
coefficientC; is
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The infinite series in (5) and (6) may be simplified using the
fact thate, < €. Setting

for =1

8

and using the relatioy |- XPi(y) = (1 — 2xy + x®)~'2, one
can express the results (5) and (6) in the closed forms

_ 4G B
R
11
1+ =" 1— 2@ 0+ ﬂ ?
€ R2 Ccos R2
and
1 1
===
qi €m 6lem 1
=— - 10
Esoivi 2R 14 e_mkew - (%)2 (10)
6W

In fact, slightly more accurate expressions could be obtained
using the approximation (& I/(I + 1)(emfew)) 1~ 1 — 1/l +
1)(em/ew) instead of (8) as shown in Appendix B. The accuracy
of (9) and (10) is sufficient, however, and we will therefore
build our model on the basis of these simple formulas. They
allow a new approach to the modeling of electrostatic solvation
and interaction energies which seems particularly suitable for
large, globular proteins.

The sphere radiuR is a quantity whose precise value for
each of the (pairs of) charges has yet to be defined. A careful
determination oR would, in principle, allow one to reproduce
the fdP interaction and solvation energies by means of (9) and
(10), respectively. Strategies of varying degree of sophistication
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Figure 1. Definition of the sphere radius for the core region. A calculation based on ellipsoid semi-axes yields results comp&gaflektained by
choosingsolute fraction(Ry.g5) = 0.95.

and computational efficiency could be imagined. In this paper, Hence, we used the latter criterion to determine the sphere radius
we will propose a fairly simple, semianalytical method based for the core regionRp.gs).
on the solvent exposure of the individual atoms. 3.2. Definition of the Sphere Radii for Surface Charges.

An extension of the sphere model to a spheroidal model 3.2.1. Charges Exposed to the SolverA major disadvantage
would reduce the need for and extent of rescaling. In fact, of replacing a molecule by a geometrically simple object such
analytical expressions can also be derived for a low dielectric as a sphere is the loss of information about the local surface
region of spheroidal shape, as shown in Appendix C. For surfacestructure. Even small water-filled cavities have a large screening
charges, a careful adjustment of the dielectric boundary position effect and dramatically reduce/enhance the interaction/solvation
as a function of solvent exposure (or some other parameter)energies of nearby solute charges. To take this effect into
would, however, still be inevitable. To keep matters simple, account, we calculate the “solvent exposupedf all atomsi
we decided to stick with the sphere model. in the molecule. For surface atoms ¢ 0), we determine the
sphere radiuRR in such a way that charges, whose solvent
exposure is large, will end up close to the dielectric discontinuity

3.1. Definition of the Sphere Radius for Charges in the ~ Surface, as illustrated in Figure 2. _ _

Core Region.In the core region of the molecule, the detailed Simple analytical cqn&deraﬂon_s Y'eld some Qu'dance in the
structure of the molecular surface may be ignored, and a constant€arch for an approprlate pregcrlptlon. We define the solvent
value ofR may be used. To avoid systematic shifts in energy, expos_urqui_of gtoml as _the fractional volume of a §he|l around
the value oRR has to be chosen correctly. Because most globular 210Mi, which is occupied by solvent. For the thicknelsof
molecules are not spherical, but rather ellipsoidal in shape, goodt€ Shell, we used = rqw,. Similar prescriptions (and results
results for the bulk electrostatics are obtained by choosing the ©f comparable quality) may be obtained by choosing a constant
sphere radius roughly equal to the minor semi-axis. This value valqe such a;& =1A .

may be obtained either by diagonalizing the mass of inertia 'St consider a completely solvated sphere of radiys
tensor of the molecule (assuming a uniform density) and nd unit charge. lts solvation energy (assuming= 1, ew =
rescaling the axes to preserve the volume or numerically by ® 1S —(2vaw)~*. To reproduce this result with (10), we have
choosingR such that a certain percentage of the sphere volume 1 adjust the sphere radi#ssuch that

is occupied by the solute. Figure 1 illustrates the fraction of 1 1 1

volume occupied by solute as a function Rffor the four - == 5= = (11)
molecules lycr, 1hdn, 2ci2, and a three-stran@esheet (GS 2R1 - (LR) 2w

peptidé®). While the first three examples (638002 atoms)

are fairly large and of roughly spheroidal shape, the 20-residue . .

GS peptide does not really fall into the class of globular proteins Supposing fhaw/r) < 1, it follows from (11) that

and is considered here to assess the quality of the method when r
applied to cases for which it was originally not designed. Rar + W sor

A calculation based on ellipsoid semi-axes yields values of 2
R which approximately correspond to a solute fraction of 0.95.

3. Implementation

o~ 1 (12)

For small values op, the distance of the charge from the surface
(29) De Alba, E.. Santoro, J.; Rico, M.; Jimez, M. A. Protein Sci.1999 8, of the sp_here may be estimated f_rom the volume fracnon_ of the
854-865. penetrating shell segment of height=r + 2ryqw — R. This
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Figure 2. lllustration of the strategy used to adjust the sphere raiascording to the shape of the molecular surface (MS) and the position of the charges.

Ro.95 is the radius of the sphere, centered on the center of geometry (CG), whose volume is occupied to 95% by solute. The hatched region inside the
molecule indicates bulk atoms. Electrostatic energies of bulk atoms in the core region (small dashed circle) are calcul&gs Usingharges which are

exposed to the solvenpi(> 0), R is madified in such a way that the charge position ends up close to the surface of the sphere (large dashed circle). The
solvent exposurg; of atomi is indicated by the hatched region outside of the molecular surface.

yields and then adjust the radius according to
RaT + 2r gl — av/p) for p~0 (13) R= max(r;) + or 7
with . = v/ 7/6. .To define a functiomR(p) valid in the interval If only one charge is exposed to the solvemiw andp of the
0=<p=1, Wh!Ch ;moothly approaches (12) for— 1, we exposed atom are used to calculate
used the modification Alternative strategies to account for solvent accessibility in
sphere-based models can be found in the work by Shire?et al.
w/;_,g’ \/ﬁ \/p - Lplﬁ (14) and in a more recent paper by Havranek and HarBUry.
4 0 1+96 3.2.2. Bulk Charges Outside the Core RegiorEven if an

atom is not exposed to the solvent, Ritarger thanR, g5 may

still be required. In Figure 2, these atoms correspond to that
part of the hatched bulk region, which lies outside the core
region, defined by core = Ro.95s — 2rvgw. Increasing the sphere
radius according to

in (13). The resultingR(p,0) satisfiesoR/dp(p = 1) = 0, and
the parameted determines how rapidlR(p,0) decreases as a
function of p. We found that small values @f produced the
best results. In the limi® — 0, one obtains the formula

3
R=r+ erdw{l VPP |“(P)} (15) R=maxRygs I + 2rqw;) (18)
which works reasonably well for the interval© p < 1. works quite well for interaction energies. In the case of solvation

Even though the previous arguments apply to solvation energies and small van der Waals radii, the relative error can
energies only, slight modifications of the semiempirical formula be high. A simple way to more accurately adjust the sphere
(15) (see Results section) were implemented as the prescriptiongadius consists of evaluating the solvent fraction in several shells
for both solvation and interaction energies. In the case of of varying thicknesses. Our results were obtained using shell
interaction energies, the situation is somewhat complicated by thicknesses oA = 1 A andA = 2 A in addition toA = ryaw.
the fact that two charges andi, have to be considered. If

) 4. Preparation of Data Sets
both charges are exposed to the solvent, we first calculate P

To test our model, we used 12 proteins for which fdP data

or = min (erdw,i{l _3 /Pi —p |“(Pi)}) (16) were available from an unrelated investigation. The molecular
i=iyiz 4 surface was used to define the low dielectric boundary in the
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Figure 3. Comparison of electrostatic energies obtained from the sphere model and from the numerical solution of Poisson’s equatioB0pe, =
1, and unit charges. Green crosses and red plus signs represent charges in the core and surface region, respectively. All energy values are in kcal/mol

sphere model, GB, and fdP calculations. The molecular surface5. Results
is spanned by theurfaceof a water probe of radius 1.4 A; it To iudae th litv of th ¢ imol tati f th
is preferred over other surface definitions (e.g., solvent acces- 0 Judge Ine quality of the present impiementation ot the

sible surface) because it gives the best agreement between fd|§pher.e model, the interaction and solvat|on energies of 12
results and experimental valu€sie seten = 1 andey = 80 proteins were compared to the values obtained by fdP. The

33 H —
in all of the calculations. Van der Waals radii were taken from PDB* codes of the 12 proteins are 1aZp (1073 atdRags =

10.0 A), 1ycr (1002, 12.5), 1ycq (979, 11.3), 1pht (813, 10.3),
the CHARMM param19 sét and ranged from 0.6 to 2.4 A. 1hdn (785, 11.5), 1ubq (746, 11.3), 2¢i2 (636, 9.0), 2ptl (575,

4.1. Sphere Model.Shells of thickness,qw were used to .
9.3), 1bpi (568, 8.0), 1pgb (535, 8.8), 1 396, 7.0 dth
calculate the solvent exposurgf the individual atomsRy o5 GS),pepﬁ(ljé (21’5 6);5) Pgb (535, 8.8), 1cm (396, 7.0), and the

was determined by increasing the sphere size in steps of 0.25
A until the solute fraction fell below 0.95. All numerical
integrations were performed by summation on a 0.25 A grid.
4.2. Finite-Difference PoissonThe fdP calculations were
performed with the PBEQ modwein CHARMM.3C Pair

No systematic optimization of parameters was performed. The
prescriptions for the adjustment of the sphere radusere
based on formula (15). Slight modification¥,(— 0.77 and a
lower bound ar + 0.6r,qw for solvation energiesy/, — 0.79
for interaction energies) were made to improve the results for

Interaction energies were obtained by cglcula_tmg the potenual one protein (1hdn) and then kept fixed for the evaluation of the
for each charge separately and evaluating this potential at theother molecules

positions of the other charges. Solvation energies were calculated . . . . .
. . All pair interaction energies and solvation energies were
by subtracting the vacuo self-energy from the self-energy in ; . o
solution. To obtain the self-energies, the fdP potential was calculated for unit charges. The quality of our approximation
: ’ turned out to be similar for all 12 molecules (Table 1). We

evaluated at the charge position itself (which yields a finite value .
. . - .. therefore only show the results for the large, roughly spheroidal
because of the charge discretization on the grid) and multiplied - )
structure 1ycq (axes ratiee 2:3) and the small, clearly

by a factor of'/,. For each charge, both self-energy values were nonspherical GS peptide. The upper panels in Figure 3 compare

calculated using the same grid to eliminate effects resulting from ; . . .
R . . . the interaction energies, while the lower panels show the results
the distribution of the charge onto the lattice sites. The grid ; - . : .
for solvation energies. The red data points in these figures

spacing used in the fdP calculations was 0.2 A. indicate atoms (or pairs of atoms) exposed to the solvent, while

4.3. Generalized Born.The program SEEB was used for g 00 gata points show the results for bulk atoms. Two different
the GB calculations. SEED performs a numerical integration colors were chosen because of the distinct nature of the

of the energy density on a cubic grid to evaluate the effective prescriptions. The discrete levels in the bulk solvation energies

1A . .
Born radii4 A grid spacing of 0.1 A was used. originate from bulk charges outside the core region (see section
3.2.2). Whenever two such atoms have the same van der Waals

(30) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan,
S.; Karplus, M.J. Comput. Chenl983 4, 187-217.

(31) Im, W.; Beglov, D.; Roux, BComput. Phys. Commuh998 111, 59—75. (33) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig,
(32) Majeux, N.; Scarsi, M.; Apostolakis, J.; Ehrhardt, C.; Caflisch, A. H.; Shindyalov, I. N.; Bourne, P. BNucleic Acids Res200Q 28, 235—
Proteins: Struct., Funct., Genet999 37, 88—105. 242.
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Figure 4. Comparison of electrostatic energies obtained from the generalized Born model and from the numerical solution of Poisson’s eguation for
80, em = 1, and unit charges. All energy values are in kcal/mol.

Table 1. Comparison of the Sphere Model and GB with fdP be required to improve the estimates for weak (highly screened)
En Eor interactions.
sphere? B sphere? GB Figure 4 compares the interaction and solvation energies

calculated by the GB method to the values obtained by fdP.
The GB approach used here is based on the Coulomb field
la2p 0.988 0.984 1.203 0.989 0.960 0.992 0.607 0.967 > app . L .
1bpi 0993 0984 1201 0991 0972 0994 0652 0971 aPproximation. This leads to an overestimation of the effective
lcrn 0.991 0.987 1.187 0.993 0.977 0.992 0.590 0.962 radii and hence to a systematic overestimation of interaction
ihdg g-ggg 8-323 i-;gg g-ggg 8-823 g-ggg 8-2?1 g-ggg energies and underestimation of solvation energies. The sig-
Ipht 0991 0986 1198 0.990 0959 0993 0622 0.966 nlflcgnt dewgtlon in the slope of the GB solvation energies is
lubg 0.991 0.988 1.195 0.991 0975 0995 0618 0970 Cconsistentwith analytical results for simple solute geometries.
lycq 0.991 0.986 1.205 0.990 0.968 0.994 0.640 0.973 The values in Table 1 indicate that the sphere model reproduces
lycr 0.995 00988 1193 0991  0.960 00994 0614 0.977 fdp solvation energies more accurately than GB. On the other
2ci2  0.996 0.986 1.200 0.991 0.964 0993 0624 0963 | "o iy liahtly bett lati ith fdp f
2ptl 0997 0.987 1195 0991 0970 0.994 0.631 0975 1and, b yields a slghtly betler correlation with td for
GS 0972 0.989 1.168 0.995 0.981 0.994 0.609 0.974 interaction energies due to the smaller spread of points in the
highly populated low energy region of the plot.
a Slopes and correlation coefficients obtained by comparing the sphere
model and fdPP Slopes and correlation coefficients obtained by comparing BOt_h the GB_ method a”?' OL_” sphere mOdel are clearly
the GB approach and fdP. superior to the simple approximatie(r) = r, which completely
fails to evaluate high energy interactions correctly (results not
radius, definition (18) of the sphere radius yields identical shown).
distances from the dielectric boundary and hence similar The computation time in the present implementation of the

solvation energies. sphere model is dominated by the few minutes needed to
The solvent-exposure parameteyields information on the calculate the molecular surface. Because the sphere model only
local structure of the solutesolvent boundary. As it appears involves integrations over shells around each atom and not over
in Figure 3, this information proves sufficient to quite accurately the entire solute volume, it is somewhat more efficient than
reproduce solvation energies even for the GS peptide which numerical GB.
consists of only 20 residues. The quality of the interaction
energies is somewhat less impressing. This is evident also in
Table 1, which contains correlation values and slopes of the  Our aim was to develop a simple but physically plausible
fitting lines, and is partly due to the fact that interaction energies model for the electrostatics of macromolecules in solution. The
may depend on the global shape of the molecule and hencereplacement of the solute/solvent boundary by a sphere yields
cannot be adequately treated on the basis of local surfaceanalytical formulas which, for an appropriate choice of the
information alone. A parameter derived from the solute distribu- sphere radius, produce good results in the bulk of the molecule.
tion in a larger neighborhood of the charges as well as a For charges located near the surface of the protein, information
prescription specifically tailored to interaction energies would on the local surface structure is inevitable for an accurate

slope  correl  slope  correl slope  correl  slope  correl

6. Concluding Discussion
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evaluation of solvation and interaction energies. We chose to equation forg(r,r')
consider a shell around the atom and used the volume fraction

occupied by solvent as the parameter which measures solventl d_2(r (rr) — I(1+1) (rr) =
exposure. Simple analytical considerations then lead to a formular 2 9(r, r2 alr,
for the sphere radius as a function of this parameter. 1
Our method yields a reasonably accurate description of 2l +1 e = R
i : : A L5 | 22
electrostatic effects at a fraction of the computational cost of a 2 r=r) 4 (22)
numerical solution of Poisson’s equation. In its current imple- c I~ R

mentation, the method is somewhat simpler and faster than a
numerical GB calculation but yields solvation and pair interac- which forr = r' allows the two solutions and (1f'*+1). Because

tion energies of comparable accuracy. The strengths of ourthe potential forx = X must be finite and symmetric under
model are the good results in the high energy region and theinterchange ok and%, g(r,r') is of the form

absence of systematic errors, both indications that the essential
physics is correctly captured. A

For macromolecules composed of several roughly spherical ;r
clusters, such as 1a2p, a more successful strategy could be to
replace the individual clusters by spheres of appropriate radius.
Future developments will include the use of a simple analytical
expression for the solvent exposure parameter. The real test for
any energy function is its application in molecular dynamics wherer- = min(r,r') andr- = max(,r'). The delta function in
simulations and its ability to discriminate between correctly (22) implies
folded and misfolded structures, and we plan to investigate this
in the future.

I<(B|r|> +I’Ii+l) r<R
G =|c o ) (23)

PEEE
€wr.

r>R

20 +1

G190y, — o =~ 23 (20
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Appendix A

The analytical solution of the PoisseBoltzmann equation
for the dielectric sphere was obtained by KirkwdddHere we

The coefficientsB, and C; can now be determined from the
boundary conditions at = R. Continuity of the parallel
component of the electric field implies

A Ml—r =Gl (26)

derive the solution for the Poisson equation, which is of mte_rest and the continuity of the normal component of the displacement
for the present approach. We want to calculate the potential aty, eld

Cartesian positioix due to a unit charge located at a poxt

inside a spherical cavity centered on the origin, of ratRasd

dielectric constantm, which is surrounded by watee), that €
is, solve the Poisson equation

g (r.r') _og(r.r)
mar l=m YW ar

(27)

r=R,

For the interior solution, one needs the expression of the

. X =R coefficientB;, which is
V(X X') = — dno(X — X)| 7' (19)
— IX>R 1 Cm
6W
1 €w
B=- = (28)

Changing to spherical coordinatasé(¢) compatible with the 1+ | €m
geometry of the dielectric boundary and using the symmetry of I+ 1€,

revolution around théx axis, we expand the potential and
delta function in Legendre polynomia¥s

H(X,X') = ;g,(r,r')P,(COSG) (20) o |y o 1-— ;
PpXX)= Y —|—— P,(cosd) (29)
S | °2+1 =0 €m{rt Rz'“1 | €m
X —X)= r_2 or—r") ;?Pl(cose) (21) T1c.

Substitution of (20) and (21) into (19) yields the following
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which, using the identitys " (r./r")Py(cos§) = 1/(% — X|),
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can be expressed in the form (9) and (10) is fully sufficient for our purpose. One could in
L fact even use the formulas for the conducting sphege «).
PXX)=—""— Appendix C
€mlX — X| Because many proteins are roughly spheroidal in shape,
11 1)\ ¢ 1 my o (30 improved estimates for solvation and interaction energies could
Rle e | £ | € (cost) (30) be obtained by approximating the solttlvent boundary by
oo 14— " a spheroid instead of a sphere. The orientation and axes ratios
[+ 1€ of the spheroid are found from a diagonalization of the
w

molecule’s mass of inertia tensor (assuming a uniform density).
Formulas (5) and (6) for the interaction and solvation energies In spheroidal coordinates, analytical results for interaction and
immediately follow. solvation energies may again be derived. We will give them
here for prolate spheroids (see the Appendix in Hill's p&ber
for details on how to obtain the electrostatic potential).
Slightly more accurate closed form analytical expressions for ~ The Cartesian coordinat&sy, andz are related to the prolate

Appendix B

(5) and (6) can be derived using the approximation spheroidal coordinated », and¢ by
| €m x = asinh() sin(y) cosg) (36)
C~1- m— (31)
€w y = asinh) sin(y) sin(p) (37)
instead of (8). From the relation z=acoshg) cosf) (38)
® 1 where the parameteris fixed by the semi-axesiarge andasmai
Z)lel(y) = (32) of the spheroid as
- 1—2xy+x
Y az = alzarge - agmall (39)

one finds by integration and subsequent derivation with respect

to x The surface of the spheroid corresponds to a vildefined

by
s ! ! small
—_ - - mal
o 1x 'Py) = tanhg¢) = 3 (40)
V1-— 2xy+ X2 arge
1 V1= 2xy + 2+ x — y A somewhat lengthy calculation yields the following expression
—1In (33) for the interaction energies between two charges
X 11—y
a,q; agf1 1
Hence, the interaction energy may be approximated by EBojj=——=——"—|——— ZJ z (—1)™ x
v Em|X| - X]| a 6
intij ¢ |7(| — T(J| Rle, e, (I + m)! ( ) Im 1 (cos §|) I (cos g]) X
1-m fm PI"(cosn)P"(cosn;) cosmig — ¢) (41)
GW 6W
1 2(”1) 0+ (rirj)z (ﬂ) where
— 2|— | cos —
R rRl \R o _ (P,m(coshés) . P{“’(coshfs))_l )
| rr. rr\2 rr. m™ | m T e Am
\/ 1- 2(#) cosf + (#) + (é) — cosf Qi(coshe)  “w Q(coshsy
_ (34) The expression for the solvation energy becomes
1—cosf
m)!]2
and from a similar calculation for the solvation energy one finds oo = — Z{ e_ - Z) Z | (I ) X
{_Cm  Cm (2| + 1)CplP'(cosh&)P(cosn)]* (43)
_ Qiz 1 1 €w €w I'i 2 m m . .
Eooni = — Re e r—zln 1-\5 (35) TheP," andQ," denote the associated Legengre polynomials of
€m Cwll, _ (F\L) (F\L) the first and second kind, respectively. Recurrence relations for

the associated Legendre polynomials would, in principle, allow

For e,y = 80 andey, = 1, the accuracy of the simpler formulas  (34) Hill, T. L. J. Chem. Phys1944 12, 147-156.
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an efficient calculation of these sums up to a givgg, but of proteins. For charges exposed to the solvent, however, a
precautions must be taken to control the loss of significant prescription analogous to (15) would still be required.

figures. A numerically robust implementation of these series

would provide more accurate results for the bulk electrostatics JA021093I
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